“我和你說的這些東西,都隻是開始而已。”
許青山並不打算浪費葉新城太久的時間。
“概率論成型後,雅各布·伯努利提出的大數定律和正態分布的發現,才是概率論徹底成型、統計學快速發展的核心基礎。”
“原來如此,正態分布,那我們學的那個?”
葉新城感覺自己在聽許青山科普講課的時候,那種感覺很妙。
自己就好像是在聽天書。
但意外的是這種天書自己竟然能夠聽得下去?
“對,其實那也叫做高斯分布。”
“數學之王高斯?”
葉新城雖然不怎麼熱愛數學,但是高斯的大名還是聽過的。
“嗯,雖然這隻是高斯諸多成就中不算起眼的那個,但高斯分布在概率論中的作用很大,高斯分布在自然界和社會現象中廣泛存在,例如身高、體重等指標都可以近似服從正態分布。”
許青山簡單地講述了一下。
“那就算是這些,我們高中也都已經開始接觸了呀,感覺這個概率論好像也沒有那麼難嘛。”
葉新城突然感覺來了信心。
似乎許青山跟自己在學的東西差距並不太大。
“錯誤的。”
許青山又搖了搖頭,笑著說道。
“這也隻是開始。”
“之後拉普拉斯的的貢獻才真正的奠定了概率論的基礎,他提出了概率的古典定義,把概率的概念從實現可能性的角度進行了界定。”
“他還創立了分析方法,引入了拉普拉斯變量和拉普拉斯積分,研究了多項式的根和對稱函數的性質”
“停停停。”
葉新城連忙喊停。
如果說正態分布、高斯分布這種東西,還是他的認知範圍裡,那許青山提到的拉普拉斯,他就是聽都沒聽說過了。
“那還隻是兩百年前的事呢。”
許青山見葉新城已經兩眼打轉,笑著說道。
“後來還有切比雪夫不等式,我之前在第一次做數競題的時候就用上了,之後更是有馬爾可夫創立了馬爾可夫過程,也是現代工程應用學的基礎之一。”
“好吧,我承認,這麼聽起來,概率論其實還是挺複雜的。”
葉新城甘拜下風,他這邊已經是在真正地聽天書了。
“複雜?”
許青山又搖了搖頭。
“還是錯誤的。”
“這裡也隻不過是概率論的基礎,接下來才是現代概率論的嚴格表述和嚴謹開端。”
“20世紀科爾莫戈羅夫采用了測度論的方法,讓概率論徹底成為一門極其嚴謹的科學。科爾莫戈羅夫不等式更是成為了隨機過程現象分析的核心工具。”
“如果要去細數一門學科的誕生、建立、基礎、提高、嚴謹、進化,最後成為一門嚴謹的、被廣泛認可的學科,其實都薈聚著不知道多少天才的心血和靈感。”
許青山給葉新城訴說著自己對於概率論,乃至對於數學的見解。
他最近一直在高強度地輸入,但是如果隻有輸入而沒有輸出,他覺得自己會有點悶。
把這些話說出來的同時,許青山也是在不斷地整理著自己的思路。
“概率論的起源和發展是一個漫長而豐富的過程。從古代至現代,數學家們通過不斷的研究與探索,揭示了隨機現象的規律性,建立了一套完善的概率論體係。”
“在這種過程中,其實概率論不斷地在接受著來自各行各業各界的批判和注釋,不斷地和各種各樣的學科融合,優化,最後才是我們如今拿在手裡的這樣。”
“敬偉大的數學家們。”
許青山拿起了自己桌上的《概率論》。
葉新城不知道為什麼,許青山在輕描淡寫地做這個動作的時候,給他的感覺很帥。
就像是那種充滿溫度的學者,卻同樣冷清的學霸。
很有畫麵感。
隻不過。
葉新城卻發現許青山保持住了這個動作,沒有動,表情也瞬間呆滯,眼神也空洞了起來,仿佛是一瞬間失了神。
“山兒?”
葉新城試探性地問了一句。
他看許青山的狀態很奇怪,回頭看了看,也沒有人過來。
現在看起來就像是許青山突然被人抽走了靈魂一樣。
許青山很難用言語和行動去形容自己此時此刻的感覺。
方才。
他在給葉新城簡單地講述概率論的數學史的時候,他的大腦裡也像是捋出來了一條完整的路線。
他所看到的,學到的,在書本中一個版塊一個版塊的東西,正在以一種飛舞的姿態,在他的頭腦中旋轉、散開,重新拚裝。
他發現自己似乎發現了一點什麼。
似乎是與數學本身關係並沒有那麼大的,但是卻與數學相互輝映的東西。
許青山眼神已經失焦了。
他完全沉浸在了自己的思路裡,哪怕是葉新城去碰他人都沒法驚醒他。
一種滾燙的、清澈的、洶湧的浪潮從許青山的胸口順著咽喉、頸椎,一直湧入大腦,直衝天靈蓋。
就這麼一瞬間,他感覺自己靈台都亮了。
彆人印堂發黑,許青山印堂發光。