第181章用世界級數學難題來檢驗自己的學習
第181章用世界級數學難題來檢驗自己的學習
向德利涅教授請了一周的假期後,徐川潛在宿舍中整理著米爾紮哈尼教授留給他的稿紙。
這次整理,就不是粗略的過一遍了。
而是詳細的去學習這些稿件中的知識,將其吸收轉化成自己的智慧。
一名菲爾茲獎臨終前的遺留,儘管隻是一部分,也足夠一個普通的數學家研究數年甚至是半生了。
對於徐川而言,這些遺留的稿紙中的計算並不是什麼珍貴的東西,有數學基礎,很多人都能計算推衍出來。
但這些公式與筆跡中遺留的思想和數學方法與路線,卻彌足珍貴。
這些東西,哪怕還未成型,僅僅隻是一些思路,也是很多數學家終一生都不見得能做出來的成果。
畢竟在所有的自然科學中,若要說依賴天賦的程度,數學無疑是站在金字塔尖的獨一檔。
哪怕是物理和化學,在依賴天賦的程度上都略遜色於數學。
可以說沒有什麼其他學科比數學更吃天賦了。
這是一門需要強大邏輯思維才能‘真正’學好的科目。
數學問題往往需要你發揮一定的創造力,從而解決陌生的問題。
如果老師的水平不夠,而你又沒能自己找到正確的方法和方向,很有可能白努力,越學越崩潰。
不止要有正向思維還要有逆向思維,在每個知識類彆都有很多的公式,而這些公式之間卻還有著巧妙的聯係;記憶、計算、論證、空間、靈活、轉變、各種你能在其他科目上找到的技巧幾乎全部都會在數學上體現。
很多網友說,被數學支配的恐懼與年齡無關,從小時候自己學習怕,長大後輔導孩子依舊還怕。
也有網友說,人被逼急了什麼事都能做得出來,數學題除外。
儘管這隻是一些玩笑話,但數學確實是一門沒有天賦、無法學好的學科。
或許伱能在大學之前,依靠各種題海戰術,名師的講解拿到高考的滿分,但進入大學或者更深入的學習後,你很快就會跟不上節奏。
哪怕花費再多的時間,儘最大努力,也不一定能理解某些數學主題的含義,也無法學習應用那些比高中更複雜的定理和公式。
比如勾股定理,這是進入初中就會學習的東西。
勾三股四弦五。
這是很多人的回憶。
然而很多人也就記住了這一句,這是最常見的勾股數。
但是後麵呢?
5,12,13)7,24,25)9,40,41,)2n+1,2n2+2n,2n2+2n+1
這些是最最最基礎的數學,也不知道還有多少人記得。
恐怕十分之一的人都沒有,更彆提與勾股數相關聯的其他數學公式定理與數據了。
如果在數學上沒有天賦,學習起數學來,恐怕會相當痛苦。
那種一堂課掉了一支筆,撿起來後,數學就再也沒跟上過節奏的,也不是什麼離奇的事情。
宿舍中,徐川一邊整理著米爾紮哈尼教授留給他的稿紙,同時也在整理著自己近半年來所學習的一些知識。
“代數幾何的一個基本結果是:任意一個代數簇可以分解為不可約代數簇的並。這一分解稱為不可縮的,如果任意一個不可約代數簇都不包含在其他代數簇中。”
“而在在構造性代數幾何中,上述定理可以通過ritt吳特征列方法構造性實現,設s為有理係數n個變量的多項式集合,我們用zero(s)表示s中多項式在複數域上的公共零點的集合,即代數簇。”
“.”
“如果通過變量重新命名後可以寫成如下形式:
a(u,···,uq,y)=iyd+y的低次項;
a(u,···,uq,y,y2)=iyd+y的低次項;
······
“ap(u,···,uq,y,···,yp)=ipyp+yp的低次項。”
“.設as=a1···,ap、j為ai的初式的乘積.對於以上概念,定義sat(as)=p|存在正整數n使得jnp∈(as)”
稿紙上,徐川用圓珠筆將腦海中的一些知識點重新寫了一遍。
今年上半年,他跟隨著的德利涅和威騰兩位導師,學到了相當多的東西。
特彆是在數學領域中的群構、微分方程、代數、代數幾何這幾塊,可以說極大的充實了自己。
而米爾紮哈尼教授留給他的稿紙上,有著一部分微分代數簇相關的知識點,他現在正在整理的就是這方麵的知識。
眾所周知,代數簇是代數幾何裡最基本的研究對象。
而在代數幾何學上,代數簇是多項式集合的公共零點解的集合。曆史上,代數基本定理建立了代數和幾何之間的一個聯係,它表明在複數域上的單變量的多項式由它的根的集合決定,而根集合是內在的幾何對象。
20世紀以來,複數域上代數幾何中的超越方法也有重大的進展。
例如,德·拉姆的解析上同調理論,霍奇的調和積分理論的應用,小平邦彥和斯潘塞的變形理論等等。
這使得代數幾何的研究可以應用偏微分方程、微分幾何、拓撲學等理論。
而這其中,代數幾何的核心代數簇也被隨之應用到其他領域中,如今的代數簇已經以平行推廣到代數微分方程,偏微分方程等領域。
但在代數簇中,依舊有著一些重要的問題沒有解決。
其中最關鍵的兩個分彆是‘微分代數簇的不可縮分解’和‘差分代數簇的不可約分解’。
儘管ritt等數學家早在二十世紀三十年代就已經證明:任意一個差分代數簇可以分解為不可約差分代數簇的並。
但是這一結果的構造性算法一直未能給出。
簡單的來說,就是數學家們已經知道了結果是對的,卻找不到一條可以對這個結果進行驗算的路。
這樣說雖然有些粗糙,但卻是相當合適。